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Combining the results in Lemmas 1.1, 1.2, and Theorems 4.3, 5.7125] S. V. Maric, O. Moreno, and C. Corrada, “Multimedia transmission in

and 6.4, we have the following. fiber-optic LAN'’s using optical CDMA,"J. Lightwave Technalvol. 14,
pp. 2149-2153, 1996.

Theorem 6.5: There exists an optiméb, 4, 1)-OOC for all posi-  [26] A. POtt,d“Ah survey on rellative differff:jce sets,” @Broups, Difference
_— — . — 94 ) ; Sets and the MonsteBerlin-New York: de Gruyter, 1996, pp. 195-232.
tive |nt.egerSU = 6 (mod 12) or.v = 24 (mod 48.)3 Th.ere exists also [27] J. A. Salehi and C. A. Brackett, “Code-division multiple access
an optimal(12v, 4, 1)-O0C exists for any positive integerwhose techniques in optical fiber networks: Part 1 and partIEEE Trans.
prime factors are all congruent tomodulo4. Commun,.vol. 37, pp. 824-842, 1989.

[28] Y. X. Yang and X. D. Lin, Code and Cryptography (in Chi-
nese) Beijing, China: Renmin Youdian, 1992.
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TABLE |
A TABLE OF BOUNDS ONA(n, d). BOLDFACE DENOTESUPDATES TO[4] AND [5]
n d
4 6 8 10 12 14

6 41 2T

7 8l 21

8 161 21 2T

9 204 41 2t
10 40! 61 21 2T
11 728 121 21 21
12 1448 241 41 21 2T
13 2563 328 41 2t 2!
14 5123 643 8! 2t 21 27
15 10242 1283 16! 41 21 21
16 20482 2562 321 41 21 21
17 2720 — 32763 256 — 340° 36 — 373 61 21 21
18 5312 — 65521 512 — 680! 64 — 725 10! 41 21
19 10496 — 131041 1024 — 12884 128 — 1444 20! 41 21
20 20480 — 26208 2048 — 23724 256 — 2793 40! 6! 21
21 36864 — 436894 2560 — 40965 5125 42 — 488 8! 41
22 73728 — 87378! 4096 — 69414 10243 50 — 885 12! 41
23 147456 — 1734913 8192 — 137744 20483 76 — 1504 241 41
24 294912 — 3443082 16384 — 241064 40962 128 — 2803 481 6!
25 524288 — 5991854 16384 — 481488 4096 — 64254 176 — 5494 52 — 565 8l
26 || 1048576 — 1198370 32768 — 861324 4096 — 10336 270 — 10294 64 —985 14!
27 || 2097152 — 2396740 65536 — 162400* 8192 — 17804% 512 —1764% 128 -169¢ 28!
28 |l 4194304 — 47934801 131072 — 291269* 16384 — 32205% 1024 — 32003 178 — 2883 56!

four new bounds ol (n, d) for n < 24, namely,A(21, 4) < 43689, The distance distributiorof a binary codeC is defined as the se-
A(22,4) < 87378, A(22,6) < 6941, and A(23, 4) < 173491. quence
Superscripts in Table | indicate the method used to obtain each upper . B
bound, where integers refer to theorem numbers in this correspondence A; = {(e1, €2) €C x C: d(er, c2) = i}|/|C]
while S refers to bounds for specific parameters (discussed in the Iggt; = 0, 1, ..., n, whered(-, -) is the Hamming distance. It is
paragraph of the next section). The best known lower bounds are jfown that
cluded for completeness; these are taken from [9].

Online versions of the tables of bounds.atv, d) andA(n, d, w) A(n, d)=A(n+1,d+1)

are available at [2]. We welcome reports of any updates, which will be . .
recorded at [2] upon verification. if d is odd. Furthermore, for any:, d) binary code with eved, there

exists anothefr, d) binary code with the same number of codewords,
in which all codewords have even weight. Hence, the search for
A(n, d) can be limited to those codes for whighs even and4; = 0

We start with a brief review of known upper bounds4f, d) that for all odd i. The linear programming bound was introduced by
are referenced in Table I. The following bounds are due to Plotkin [12)elsarte [6], who showed that the distance distribution of any code

II. A TABLE OF BOUNDS ONA(n, d)

Theorem 1: satisfies
A(n, d) <24(n — 1, d) > APi(i) 20
d ) =0
Aln, d) <2 {Qd — n,J ’ it <2d fork =0, 1, ..., n, whereP;(z) is theKrawtchouk polynomiabf
A(n, d) <2n, if n = 2d. degreek, given by
k
Johnson [10, p. 532] showed that the sphere-packing bound can be im- Pi(z) = Z(_l)j <”> <’; - ”) )
proved as follows. = J =]
Theorem 2: For every positive integef As discussed above, it would suffice to consider only even values
of d, while assuming thatd; = 0 except for A, and A,
_ n — Agy2, ..., A1, /21. This leads to the following theorem.
A(n, 26) <2"7! <" 1>+...+<" 1) +2 2[n/2] g
0 b-1 Theorem 3: For every positive even integér
—1
(") = (%A — 1,28 25 — 1) A(n, d) S 14 [max(Aa+ Aavz + o+ Aopnyz))]
4 s=1 v o . . .
[("50)] subject to the constraints

<A € Aln, d, @ = 1 o, 2 :
The best known bounds o#i(n, d, w) are tabulated in [1], [2]. One 0<Ai < Aln, d, D), i=d,d+2, ..., 20n/2]
useful result of Theorem 2 id(24, 4) < 344 308. This was known [n/2]
to Johnson [8, Table I] in 1971, but has been overlooked in later tables Z Ay P(2)) > — <Z) 5 E=1,2,..., |n/2]. (@)
[4], 5] =72 ?
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In some cases, the right-hand side of (1) can be slightly increas&@&fnstruction of Fast Recovery Codes Using A New Optimal
as in the following theorem [3, Theorems 5, 8]. Importance Sampling Method

Theorem 4: The distance distribution of afn, d) binary code of Michael Yung Chung Wei and Lei WeSenior Member, [EEE
odd sizeM satisfies '

[»/2] 1-M(n Abstract—in this correspondence, we introduce the problem of con-
Z A2 Pr(2f) » ——— , E=1,2,..., [n/2] structing good fast recovery convolutional codes. When the constraint
M k lengths of the candidate codes are long (say more thah2), it is too

computationally complex to perform the code search task. Fortunately,

we can transform the code construction problem to a problem related

while if M = 2(iod 4), then for at least onee {0, ..., n} to a transient Markov system. We then develop an optimal importance
sampling (IS) method to fulfill the tasks. In this correspondence, we

also prove several propositions for optimal IS. For instance, we show

j=d/2

ln/2] (2_41/])(2)4_23{,(1) analytically that the optimal IS method is unique. We prove that the
Z Ao Pr(2j) = i , k=1,...,|n/2]. optimal IS method must converge to the standard Monte Carlo (MC)
j=d/2 £ simulation method when the sample path length approaches infinity.

This finding shows that it is not the size of the state space of the Markov
system, but the sample path length, that limits the efficiency of the IS
: e method. Based on insights from the optimal IS method, a suboptimal
Finally, spme bounds hc_)ld only for specific values rofand d. IS method is then proposed to search for long fast recovery codes. The
The following bounds, which do not follow from Theorems 1-4g,poptimal method can achieve a substantial speedup gain. After that,

are included in Table 14(13, 6) < 32 was proved by linear pro- several numerical results are presented to study the efficiency of the IS
gramming in [10, pp. 538-540], using constraints specifically derivedethods and to justify the code search procedures. Finally, we give the
for these parameters. In a similar manner, van Pul [13, pp. 32-38fie search results and the application of these codes.
proved A(18, 8) < 72, A(21, 10) < 48, and A(22, 10) < 88, Index Terms—Convolutional codes, fast simulation, importance sam-
while Honkala [7, pp. 25-27] obtained (25, 12) < 56 and Ppling (IS), M-algorithm (MA), Markov systems, sequential decoding.
A(26, 12) < 98. The boundsd(17, 6) < 340, A(21, 6) < 4096,
A(17, 8) € 37,andA(21, 8) < 512 have been derived in [3], appar-
ently by linear programming, although the specific inequalities used in
the optimization are not disclosed in [3]. The bountd 1, 4) < 72 Over the last 30 years, the famous Viterbi algorithm (VA) has been
and A(12, 4) < 144 have been established in [11] with the help ofvidely applied in digital communications [1], [2]. The complexity of
a computer-assisted search method (thereby proving a long-standheVA (in terms of the number of states) grows exponentially with the
conjecture). constraint length of the code. For codes with large constraint lengths,
sequential algorithms such as the Fano algorithm [3], [4] and Stack
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